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Abstract-This paper is concerned with single-phase natural convection in a short, square-section, radial 
tube rotating under steady, laminar conditions. The differential equations governing continuity, momentum 
and energy in a rectangular cavity rotating about a vertical axis at various speeds are solved numerically 
using a finite-difference algorithm. Results have been obtained for impeded flow with representative values 
of the principal nondimensional groups: Rayleigh number, acceleration ratio. Ekman number, Prandtl 
number (100). eccentricity ratio (100) and aspect ratio (5: 1). The data obtained revealed the complex 
effect of the Coriolis acceleration on flow and heat transfer when the tube wall temperature increased 

linearly with radius. 

1. INTRODUCTION 

ONE OF THE earliest practical applications of natural 
convection in the removal of heat from rotating 
machinery is provided by the thermosyphon cooling 
system proposed by Schmidt [I]. This was designed 
to permit higher working temperatures in gas turbines 
by using hollow blades sealed at the tip but opening 
at the root into a drum containing a liquid coolant. 
Under high centrifugal accelerations, typically of the 
order of lO“g, the liquid coolant not only fills the 
blade cavities but circulates under the influence of 
thermally induced buoyancy forces created by the 
internal temperature field. It is thus possible to pro- 
duce very high convective fluxes inside the blade and 
thereby keep its exterior relatively cool, at least in 
principle. 

Various practical difficulties with this ingenious 
scheme [2] led to it being succeeded by another in 
which the basic idea was retained but the details 
changed. Specifically, the open mouth was abandoned 
and replaced by a tubular extension of the blade cavity 
which was then completely sealed after first being 
charged with a suitable coolant. The heat transferred 
from the hot gases surrounding the blade continues 
to be removed by a convective flux, but this now 
penetrates into the tubular extension, the principal 
design difference being the subsequent removal of this 
heat by external cooling provided within the drum. 

Given this application of the radial thermosyphon 
to high speed gas turbines, it is perhaps not surprising 
that attention was focused initially on behaviour near 
the fluid critical pressure [3]. Above this pressure, the 
internal circulation is driven by thermal buoyancy, 
while below it the circulation is driven by Archi- 
medean buoyancy in the presence of a phase change. 
Generally speaking, the latter is much greater than 
the former except near the critical pressure when the 
coefficient of thermal expansion /I + a~. 

The static simulation of two-phase behaviour in 
rotating thermosyphons has been inconclusive [4], 
and indeed fundamental characteristics continue to 
unfold [5, 61. There appear to be no comparisons of 
tilted and radial evaporative thermosyphons which 
test the conventional wisdom that a lateral body force 
component (from gravity) acts in a similar way to the 
Coriolis acceleration, despite the fact that the former 
is uniformly pervasive while the latter depends directly 
on the fluid velocity, i.e. independently of buoyancy 
[71. 

Under single-phase conditions, the situation is less 
complex because the influence of the Coriolis accel- 
eration is no longer felt at a liquid-vapour interface 
where it is capable of altering both the shape and the 
stability characteristics; nor is the influence felt in 
the processes accompanying boiling [8]. The non- 
evaporative, radial thermosyphon separates these 
effects from the more general effects incorporated in 
the equation of motion. Understanding of the simpler 
system thus leads to an understanding of the more 
complex system. Equally important is the single-phase 
system in its own right. By their nature, tubular ther- 
mosyphons transmit longitudinal convective fluxes 
which are much larger than the equivalent conductive 
flux under the same thermal conditions, and this is 
true even for single-phase natural convection. Single- 
phase thermosyphons are useful whenever the thermal 
resistance they establish is small in relation to the 
flanking resistances with which they are in series. 
Single-phase, radial thermosyphons therefore have a 
potential role to play, on Earth or in space, whenever 
their conductances are high enough for the designer 
to benefit from their comparative simplicity. 

In this paper, a radial thermosyphon in the shape 
of a rectangular cavity will be studied in its simplest 
and most conservative form ; namely, single-phase 
natural convection under steady laminar conditions. 
The purpose is to use a numerical analysis to reveal 

1231 



1232 G. S. H. LOCK and LITONG ZHAO 

NOMENCLATURE 

A area Greek symbols 
D width B thermal expansion coefficient 
Ek Ekman number acceleration ratio 
9 gravitational acceleration ;I temperature difference 
k thermal conductivity K thermal diffusivity 
L length V momentum diffusivity 
NU Nusselt number P density 
p, P absolute (nondimensional) pressure 4 nondimensional temperature 
Pr Prandtl number # azimuthal displacement 
e heat R rotational speed. 
R radius 
2 root radius Subscripts 
T absolute temperature C cooled 
U, u axial (nondimensional) velocity H heated 
v, v radial (nondimensional) velocity m mid length 
W, w tangential (nondimensional) velocity 0 reference 
X, .Y axial (nondimensional) displacement X, etc. differentiation with respect to X, etc. 
K .I’ radial (nondimensional) displacement 
z, z tangential (nondimensional) Superscript 

displacement. per unit time. 

the circulation set up in a viscous liquid under the 
influence of a tube wall temperature increasing lin- 
early with radius. In particular, the results will be used 
to describe both the primary and the secondary flow 
and their influence on heat transfer. This permits com- 
parisons with the tilted gravitational system. It also 
elucidates the role of the Coriolis acceleration and 
thereby tests the conventional wisdom. 

2. PHYSICO-MATHEMATICAL DESCRIPTION 

The most natural way to describe incompressible 
fluid motion in a rotating system is to use a system 
of coordinates which rotates synchronously with the 
system itself. For a radial thermosyphon rotating 
steadily at a speed Q about a vertical axis, the govern- 
ing equations then take the following form [9]. 

Continuity 

Continuity 

u,+v,+w,=o. 

Axial momentum 

v*v=o. 

Motion 

p(V*V)V+2pRxV = -VP 

-ppQ[g-ax(nxR)]+pV2V 

in which the Boussinesq approximation has been 
invoked, and 0 = T- T,,, where T, is a reference tem- 
perature at which the fluid is isothermally at rest. 

Energy 

pcJV.V)& = kV2t’ 

A 1 heated 1 

n 

in which compression work and energy dissipation 
are ignored. 

These equations apply to the short, rectangular FIG. 1. Coordinate system for rotating tube. 

cavity depicted in Fig. 1. The vertical coordinate X is 
measured upwards while the tangential coordinate Z 
is measured clockwise from beneath, increasing from 
the trailing to the leading face. The length of the cavity 
L is taken to be much greater than its width D; the 
ratio is here fixed at 5 : 1. The governing equations may 
thus be written in a rotating, rectangular Cartesian 
system of coordinates as follows : 

(1) 
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Radial momentum 

fJv,+ vvy+ WV,-2nw= -$P)+m*(~+ Y) 

+ v( v,.,y + vyy + Vzz). (3) 

Tangential momentum 

uw,y+ vw,+ ww,+2nv = - ;Pz 

-pm z- f +v(Wxx+ wry+ W,,). (4) 
( > 

Energy 

uo,+ my+ wo; = K(e,~+U,.,+u,,). (5) 

The boundary conditions to be satisfied are: 
U = V = W = 0 on all enclosing planes and 
0 = T- T,,, = o“(2 Y/L- I)/2 on the side planes, where 
0’ = TH -T, is the overall temperature difference 
between the ends and T,,, = (T, + T,)/2 is the average 
(mid-length) wall temperature. The thermal boundary 
condition represents perfectly conducting cavity walls 
and is most appropriate to a thermosyphon for which 
the heated and cooled sections are not separated by 
thermal insulation. 

3. NUMERICAL FORMULATION 

Prior to attempting a solution of equations (l)-(5), 
each of the primitive variables contained therein was 
re-cast in non-dimensional form through the use of 
the following definitions 

X 
x = - 

D’ 
y=;, Z z=- 

D 

UL V WL 
v=-, 

‘=cF’ ,jF ‘I’ = OJF 

where 

F= ~Q’(9+L)(TH-r,); 

measures the thermal buoyancy, the driving force. 
With the exception of coordinates and the tempera- 
ture, the above variables are not, in general, nor- 
malized; the range of conditions covered below is too 
great to expect uniform normalization from a single 
choice of scales. However, the selection of appropriate 
scales for particular conditions will be used later to 
discuss the particulars bf system behaviour. Sub- 
stitution into the governing equation thus reveals six 
controlling parameters : Prandtl number Pr, here fixed 
at 100 to represent a viscous liquid ; aspect ratio L/D, 
fixed at 5: 1 ; eccentricity ratio 9/L; acceleration 
ratio fi*(9+ L)/g; Ekman number Ek = v/RD* and 
Rayleigh number Ru = /?fl’(W+ L)( T, - T,-)D’/vK. 
More will be said about these parameters in the next 

section. At this point it is sufficient to note the great 
variability, even within the limited problem posed. 

The resulting nondimensional equations were 
solved using the SIMPLE-C finite-difference algor- 
ithm [lo, 111, treating buoyancy as a source term. 
The solutions were deemed to have converged when 
two successive iterations produced agreement within 
0.5% in the dependent variables. Following previous 
experience [I 2, 131 a 15 x 51 x 15 non-uniform net- 
work was used to generate field data from which the 
Nusselt number was calculated according to the 
definition 

QL 
Nc’ = Ak(T, - T,) 

where 8 is the total heat flux into, through and out 
of the cavity, and A is half the total surface area, i.e. 
A = D’+?LD. Typically, 2 h CPU time on a FPS 
164 computer were required for each converged data 
point. 

Essentially the same programme has been used suc- 
cessfully in similar work [ 13, 141 prior to which it was 
validated both qualitatively and quantitatively. The 
flow details presented below are therefore considered 
to be correct. The accuracy of the Nusselt number has 
been estimated at about 5%, the maximum difference 
between the calculated heat input and output. No 
check of mesh independence was made for these non- 
uniform mesh data, but a comparable test for an 
eccentric thermosyphon with a uniform grid confirms 
the accuracy estimate. 

4. DISCUSSION AND RESULTS 

Since seven parameters have been identified it is 
clear that a systematic survey of each is beyond a 
single study. The discussion below is therefore restric- 
ted to a survey of regime behaviour so as to provide 
a rational basis for future work. The geometry is 
defined by the square-section and a length-width ratio 
of 5 : 1. The fluid is taken to have constant properties 
with a Prandtl number of 100, characteristic of viscous 
liquids, and the eccentricity ratio St/L is fixed at 100 : I 
with the axis of rotation being vertical. Only brief 
consideration will be given to the effects of Pr and 
2/L. This essentially limits discussion to the effects of 
three parameters on heat transfer rate: the Rayleigh 
number in the laminar range IO3 < Ra < IO’; the 
Ekman number in the lower speed range 10m4 < 
Ek < IO-’ ; and the acceleration ratio in the practical 
range 1 < q < 100. 

4.1. The efecr qf RayleQh number 
The effect of Rayleigh number on heat transfer is 

shown in Fig. 2 with Ek = 5 x 10m3 and q = 100 : 1. 
Also shown (circles) is the numerical data of Lock 
and Zhao [ 151 for the same cavity standing vertically 
at rest (with Q*(g+-f) replaced by g in the Rayleigh 
number). Since the vertical cavity experiences neither 
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Fio. 2. Ell’cct of Raylcigh number on heat transfer. 

a lateral gravitational component nor the effect of 
Coriolis forces, the comparison provides a measure of 
the latter in the rotating cavity. In the vicinity of 
Ro = 10”. the Coriolis forces evidently improve the 
heat transfer rate slightly. This is probably caused by 
the accompanying secondary flow but the per- 
formancc reversal at Ra = 10J, for example, suggests 
that a simple explanation may not exist. 

In general terms, the data of Fig. 2 reveal three 
diffcrcnt regimes. For low Rayleigh numbers, e.g. 
Ro < IO’, the Nusselt number is at, or very close to, 
the conduction limit NLI = l/l I, according to the 
definition given earlier. Under these conditions. the 
velocity field has little influence on the conductive 
temperature field. Near the upper reaches of the 
regime. however, the temperature field does influence 
the velocity field. In particular. it influences the stab- 
ility and evolution of the mid-length thermal exchange 
mechanism as it changes from pure conduction to 
pure convection [S, 16, 171. The lowest data for the 
rotating cavity, although shown as part of a con- 
tinuous curve. were not the only converged results 
obtained in the region. A few other points (not shown) 
representing alternative stable, though perhaps not 
unique, solutions suggested that the thermal exchange 
mechanism may be especially susceptible to slight 
shifts in the presence of Coriolis forces ; in particular, 
the organization of convective filaments carrying hot 
and cold streams may be influenced by the Coriolis 
effect. Only a fully transient solution could provide a 
complete description of these bifurcations which, 
being sensitive to initial conditions. stand in sharp 
contrast to all the other data of this paper. 

For much higher Rayleigh numbers, e.g. RN > 106, 
the rotating cavity data are reminiscent of a laminar 
boundary layer regime. In its upper reaches, the curve 
shown appears to be asymptotic to a line of slope 0.25, 
but some difficulties with convergence again sound a 
note of caution. Under these conditions, the con- 
vective exchange mechanism in the mid-length region 
is well established in a bifilamental form, as dem- 
onstrated below. However, the role of the Coriolis 
forces may be expected to increase within the bound- 
ary layer as it becomes thinner and moves faster. This 
is particularly true over the upper and lower surfaces 

where the Ekman layers operate. Such a development 
at very high Rayleigh numbers may thus preclude 
the existence of the classical boundary layer regime 
observed in stationary thermosyphons [IS]. 

Between the upper limit of the conduction regime 
at Ro 2 IO’ and the lower limit of the boundary layer 
regime at Ra = IO5 is an intermediate regime. In gravi- 
tational thermosyphons, corresponding limits have 
been used to define the impeded regime [ 13. 181. This 
is the principal regime of interest in this paper. For 
stationary cavities, the slope of the Nu = Ra curve is 
equal to. or slightly less than. I.0 under laminar 
impeded conditions. Figure 2 reveals that this is not 
true for the rotating cavity considered here. It appears 
that as the Rayleigh number is lowered beneath IO’, 
the effect of the Coriolis forces is to accelerate entry 
into the conduction regime, thus steepening the slope. 
All of the corresponding data on the curve shown in 
Fig. 2 represent stable solutions. One point in the 
middle of these impeded data. specifically at 
Ru = 5 x IO’. will be used as a reference when inves- 
tigating the effects of other parameters below. 

Under these particular conditions, Fig. 3 displays 
the velocity field in a longitudinal, horizontal plane 
lying in the mid-X plane of rotation. By analogy with 
a vertical thermosyphon, this reveals that the deep 
flow. i.e. near the closed ends, has an annular refluent 
form ; that is, fluid near the side walls flows towards 
the mid-length position while central cores flow away 
from it. Away from the ends, however, the flow is 
evidently bifilamental with hot fluid moving radially 
inward over the leading face to supply the core in the 
cooled section while cold fluid moves radially outward 
over the trailing face to supply the heated section 
core. 

The extent of the bifilamental region is greater than 
might be expected in a vertical thermosyphon, but is 
reminiscent of that found in the tilted thermosyphon 
[I 31 where the lateral component of the gravitational 
field creates a secondary flow. Here, it is the Coriolis 
acceleration which plays a similar role; for example, 
by causing the radially inward moving annulus of fluid 
in the heated section to collect along the leading face. 
This behaviour supports the conventional wisdom on 
the effect of Coriolis forces, at least in a qualitative 
sense, but a more thorough appraisal will be given 
later. 

Figure 4 shows the relative contributions to the 
overall heat transfer rate attributable to each of the 
individual surfaces of the cavity. In the boundary layer 
regime, all the surfaces evidently make very similar 
contributions. In the conduction regime, the end sur- 
face eventually dominates, although this is not clear 
from the figure, given the Nusselt number scale 
chosen. In the impeded regime, it is the trailing face 
which makes the greatest contribution, matched only 
by the combined effect of the upper and lower faces 
where the Ekman layers are located. At first thought, 
this is a surprising result, given the anticipated role 
of the Coriolis acceleration in the Ekman layers. To 
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Ra=5XlO4, Ek=5xl O-3, Pr=l 00, rl=lOO 

FIG. 3. Longitudinal velocity field in mid-plane of rotation. 

understand the reason behind this finding it is necess- 
ary to consider the role of the Ekman number. 

4.2. The effect qf Ekrnan number 
As the Ekman number increases, the effect of the 

Coriolis acceleration decreases ; for a sufficiently large 
Ekman number the Coriolis effect may be ignored. 
Consider the consequence of decreasing the Ekman 
number when the Coriolis effect is weak. It is to be 
expected that the Ekman layers would then begin to 
play an increasing part in the secondary flow, thus 
increasing the heat transfer rate; that is, the Coriolis 
effect would be analogous to tilting a vertical cavity. 
Under these conditions. the contributions of the 
Ekman layers to the heat transfer rate may be esti- 
mated from a scaling analysis of equations (l)-(5). 

A balance between the thermal buoyancy and the 
largest viscous term in the radial equation of motion 
implies that 

where the superscript c indicates the scale of the vari- 
able. Likewise, a balance between the Coriolis accel- 
eration and the largest viscous term in the Ekman 
layer implies that 

g$ = O(2Qv’) 
E 

where X; is the thickness scale of the Ekman layer. 
In general, X; < Xc, the thickness of the primary flow 

35. 
0 total 

30. 
x top + bottom 
A trailing 

25. oend 
+ leading 

20 
t Ek=5xlO-3 . 

15 

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 

log Ra 

FIG. 4. Components of the overall heat transfer rate. 

layer on which the Ekman layer depends. Consider 
the consequence of Xg = X’ when a thermal balance 
completes the essential description. Equating the heat 
supplied conductively to each Ekman layer to that 
removed convectively 

where Z’ = O(D), the cavity width. 
Equations (7)-(9) yield the following scales 

(9) 

(10) 

(11) 

(12) 

from which the heat transfer through the Ekman 
layers may be determined. Thus 

where C, is an empirical coefficient. 
This result suggests that the Ekman layers reflect 

the augmentation of heat transfer in the presence of 
a weak Coriolis effect, when the heat transfer will 
increase as the Ekman number decreases. Such a 
Coriolis-enhanced regime is evident in Fig. 5 which 

0 total 
= top + bonom 
A trailing 
o end 

0.5. 

3 0.0. 
z 

E -0.5. 

-1.0. Pr=100 

-1.5. 
-3.0 -2.5 -2.0 -1.5 -1 .o -0.5 0.0 0.5 

log Ek 
FIG. 5. Effect of Ekman number on heat transfer. 
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FIG. 6. Longitudinal velocity field in mid-plane of rotation. 

shows numerical data covering the range 2 x 10m3 < 
Ek < 1.0 ; an asymptote based on equation (13) is 
shown against the high Ek data. Figures 6 and 7 show 
the primary flow under these conditions. Both figures 
reveal that the flow deep within the cavity, i.e. near 
the closed ends, has an annular form reminiscent of 
a vertical cavity. The Coriolis effect induces fluid 
leaving the cold end to collect along the trailing face 
while warmer fluid coming from the hot end collects 
along the leading face. This tendency converts the 
deep annular pattern into the mid-length bifilamental 
pattern shown. 

Figure 5 reveals that the enhancing effect of the 
Ekman layers does not continue indefinitely. As the 
Ekman number decreases, this regime is succeeded by 
another with the opposite effect, and more appro- 
priately described as a Coriolis-impeded regime. The 
role of the Ekman layers in this lower regime continues 
to be strong, as evidenced by the form of equation 
(10) and the contribution of the top and bottom sur- 
faces seen in Fig. 5. However, it is the trailing face 
which then provides the best measure of the effect 
of Ekman number in conditions where the Coriolis 
acceleration, acting tangentially, creates a substantial 
alteration in the pressure field. While this effect is 
roughly analogous to that found in highly tilted (near 
horizontal) gravitational systems, it acts to oppose the 

main flow and thus denies the conventional wisdom 
based on the analogy. 

In a geophysical context, this situation corresponds 
to a geostrophic flow in which the effect of the pressure 
gradient is balanced by the Coriolis effect. A scaling 
analysis of equations (l)-(5) again provides some 
insight. 

Elimination of the pressure from the radial and 
tangential equations of motion yields a balance 
between the three principal terms ; thus 

/?R2.m, - v vzzz = O(2Q V,) 

from which the corresponding velocity and thickness 
scales are found to be 

and 

These correspond to a two-dimensional primary flow 
field independent of axial location X, and for which 
the heat transfer rate through the trailing face is given 
by 

y=o.o5 y=O.ll y=o.41 y=o.49 

FIG. 7. Development of velocity profile : E/c = 2.5 x IO-‘. 
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Ra=5x104, Pr=lOO,q=lOO 

FIG. 8. Development of velocity profile : Ek = 5 x IO -‘. 

Nu= CzRaEk (15) control the tangential pressure gradient. An asymp- 
tote based on equation (15) is shown in Fig. 5. 

where C2 is an empirical coefficient. This result con- Figures 8 and 9, together with Fig. 3, describe the 
trasts strongly with that given by equation (13), and velocity field in this impeded regime. From Fig. 8, it 
illustrates the result of Coriolis forces large enough to is evident that the primary flow is almost two- 

Ra=5xlO4, Ek=5X10w3, Pr=lOO 
FIG. 9. Development of transverse velocity field : 7 = 100. 
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FIG. IO. Effect of acceleration ratio on heat transfer. 

dimensional, as anticipated. However, it is clear from 
Fig. 9 that a secondary flow continues to exist. The 
deep flow again reveals a stagnation point from which 
fluid no longer radiates axisymmetrically. Instead, it 
flows more or less in the planes of rotation under the 
influence of strong Coriolis forces. Vortices appearing 
at the corners flanking the leading face grow with 
distance from the closed end until, at the mid-length 
plane, they form one of two symmetric pairs. The 
Ekman layers are thus preserved. 

4.3. The efect of acceleration ralio 
The above results were obtained with an accel- 

eration ratio q = Q’(w+L)/g >> 1. The effect of 
reducing this ratio while maintaining&Y x L, is shown 
in Fig. 10 which reveals that the Nusselt number 
asymptote is almost reached when q < IO; the pre- 
vious neglect of gravity is thus justified a posteriori. 
When q << IO. gravity exerts an influence in two ways : 
on the secondary flow through direct thermal buoy- 
ancy ; and on the primary flow through indirect ther- 
mal buoyancy. In the limit as r) + 0, system behaviour 
reverts to that of a stationary horizontal cavity, but 
this cannot be shown on Fig. IO which is constructed 
with fixed values of Ra and Ek. For a fixed geometry, 
decreases in q are attributable only to decreases in 
speed R, at least on this planet. The increase in Nusselt 
number found as q decreases evidently has two main 
causes : an increase in D3( T,, - T,-)/vK, from the Ray- 
leigh number restriction, and a decrease in v/D2, from 
the Ekman number restriction. 

Figures 1 I and I2 show the flow field for q = I with 
Ra = 5 x 104, Ek = 5 x 10e3 and 1/L = 100. In both 
of these, the twisting effect of gravity is revealed. This 
stems from the superposition of two lateral force fields 
which are mutually perpendicular: Coriolis forces act 
tangentially in planes of rotation, while direct thermal 
buoyancy acts vertically. Their combined effect obvi- 
ously varies with q, the resulting lateral field gradually 
rotating through 90” as q decreases from very large to 
very small values, or vice versa. 

By comparison with Fig. 8, the primary flow field 
shown in Fig. II is no longer quasi-two-dimensional, 
the change being greatest nearer the closed ends. Like- 
wise, by comparison with Fig. 9, the secondary flow 

field shown in Fig. 12 is no longer symmetric about 
the mid-X plane of rotation. The augmentation of the 
downward flow of cooled fluid near the leading edge 
is clearly evident deep within the cavity. At the mid- 
length plane, direct thermal buoyancy now creates an 
anti-symmetry not unlike that observed in a square- 
section cavity with its sides inclined [l9]. 

5. CONCLUSIONS 

This paper provides a numerical analysis of a square- 
section, radial cavity rotating about a vertical axis. 
The governing differential equations for continuity, 
momentum and energy have been solved using a finite- 
difference algorithm in a set of coordinates rotating 
synchronously. The equations were given a rec- 
tangular formulation appropriate to steady, laminar 
flow subject to the Boussinesq approximation. Solu- 
tions were then obtained iteratively for a IS x 5 I x 15 
network. Convergence required successive agreement 
of better than 0.5% in the dependent variables. 

Nondimensionalization of the governing equations 
revealed that the heat transfer rate could be expressed 
in a fairly general relation of the form 

By choosing Pr = 100 and fixing the geometry and 
orientation of the cavity, it was possible to study the 
behaviour of viscous liquids under representative con- 
ditions. In particular, the role of the Coriolis effect 
has been explored under low speed conditions. 

The effect of Rayleigh number on heat transfer 
revealed three well-established regimes : a conduction 
regime and a boundary layer regime separated by an 
impeded regime, the latter being the focus of this 
paper. The effect of the Ekman number was to com- 
plicate this classical description of regimes. Even 
within the restriction of impeded flow, it was found 
that the Ekman number introduced at least two fur- 
ther regimes. At higher values of Ek (lower speeds), 
the Ekman layers improved heat transfer rates in what 
has been called the Coriolis-enhanced regime. At 
lower values of Ek (higher speeds), the Ekman layers 
were unable to prevent a general deterioration in per- 
formance in a Coriolis-impeded regime. 

The Coriolis-enhanced regime is not unlike that 
found in cavities tilted slightly from the vertical. This 
behaviour is in keeping with the conventional wisdom 
which presumes an analogue, even though Coriolis 
forces (in the rotating system) are not directly depen- 
dent on the temperature field while lateral buoyancy 
forces (in the stationary system) are. To extend this 
‘analogy’ to higher speeds or greater tilts appears to 
be a gross error. While both show a performance 
deterioration attributable to a modified longitudinal 
pressure gradient, the rotating system tends to pro- 
duce a flattened velocity field which decays, theor- 
etically, to zero as Ek -+ 0. 
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Ra=5x104, Ek=5XlO-3, Pr=lOO 

y=O.ll y=o.41 y=o.49 

FIG. 1 I. Development of velocity profile : q = 1. 
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Ra=5x104,Ek=5x10-3, Pr=lOO 
FIG. 12. Development of the transverse velocity field : tl = 1. 

The effect of reducing the acceleration ratio was flow field increased the heat transfer rate, signalling 
also found to be complex. With q = 1, it was found the benefits of low speed rotation 
that the vertical gravitational acceleration combined 
with the tangential (horizontal) Coriolis acceleration 
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